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SKEW IMPACT OF A MATERIAL POINT ON AN INFINITE STRING LYING 
ON AN ELASTIC SUPPORT* 

S.B. HALANOV and G.A. UTKIN 

The skew impact of a material point on an infinite string resting on a 

linearly elastic support is considered. An exact solution of the problem 

is obtained for the case when the string is not spring-loaded. In the 

case of a spring-loaded string the paper deals with the functional re- 

lations between the duration of contact, the angle of reflection, the 

distance covered by a material point along the string during the contact, 

and the coefficient of restitution and the angle of impact of the point 

on the string, for various degrees of stiffness of the support. 

In problems of the collision between a concentrated object and a one-dimensional system 

discussed in /l-4/ mainly direct impact was investigated. The present paper is concerned with 

the case when the concentrated object slides over a distributed system. 

Let us consider the skew impact of a material point of mass m on an infinite string at 

rest, of density P and tension T, lying on an elastic support of stiffness k. We shall assume 
that the motions of the object take place in the SIL plane in such a manner that u(r.t) is 

the transverse deflection of the string, and u,,(t) and 1 (t) are the generalized coordinates 

of the point along the u and z axes, respectively, i.e. the relation IQ(~) := u (1 (t), t) holds at 

the time of contact. We can assume without loss of generality that the contact begins at the 

instant t=o at the point z=- II. 

Assuming that 

their simultaneous 

the oscillations of the string are small, we can formulate the problem of 

motion, as in /2/, as follows: 

CL,, - L~?u~~ + h?u = 0 (a% -= Tip, II’ = kip) V) 

mu”‘. (t) = p (a2 - 1’? (1)) [u,] 

ml” (n == --‘/,p (a” - 1’2 (t)) lu,‘l (2) 

([A (.c, t)] = A (1 (t) -I- 0, 1) --- A (I (t, - (I, 0, 

Y (I, 0) = 0, ut (I, 0) =- 0 (3) 

U0 (0) = 0, ug (0) = -",, 1(O) = 0, 1 (0) = L’) (I GA 1 ; 0) 
u- (I, ‘). -ca<z<I(!) 

u (2, t) = uo (‘), I = 1 (t) 
u+(“,t). l(Q<“<fc= 

where u(+,I) is a piecewise-smooth function. 

To solve the problem we shall use the following integral Fourier transformation in t: 

U (0, t) zz +i- u(~,t)e-*~~~'dz = F(u(r, 1)) 
-_ 

Taking into account the relations 

F (U,,) = Lilt - 1'2 (t)V, I: (I&.) = -4rr?o?G - I~ 

v = ,11p-'u," @)@? _ I'? (t))-l,-an'ol(O 

we shall transform the first equation of (1) into the ordinary differential equation 

U,, + (4.x2&$ + h*)U = -mp%," (t),-anior(') 

with zero initial conditions. Solving this equation and returning to the original function, 
we obtain /5/ 

e(a(t - T)- 1 z - l(t)I)d+, 1 I 1 <at 
u (2, t) = 0, 1 E 1 > at 
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Here J,,(g) is a Bessel function and O(y) is the Heaviside unit function. Since u(z,t)SO 

1 zl> at* we shall continue our investigation in the region IzI<at. 
We rewrite Eq.(2) in the form 

= + 1’ (4 _ a + 1’ (0) 
q-- a - 1 (0) 

e+$([.Jdt) 
0 

From this it follows that if 1 r(o)l<a, the following inequality holds for the function 
satisfying Eq.(2): 

We can show that for %~[O,tl 
I I’ (0 I < (1 

(5) 

e (a (f f3 - - 2 - 7) - 1 2 - l(5) I) = i (0 (t 7) + 1 (T)), 2 > I(0 8 (0 P - 7) + 2 - 1 (T))> z < 2 (I) (6) 

Indeed, if 5 > l(t) and z > I (T), then Eq.(6) is obvious. If r(t) <z<~(T), then using 
inequality (5) we arrive at the following sequence of inequalities: 

0 < 1 w - x< 1 (T) - 2 (0 d I I’ ce, I 0 - ‘c) < a (f - z) (T ( E ( t) 
From this we have a(t-z)k(t--(@)>O, i.e. 

e (n (i - r) - I z - z t5) 1) = e cd (t - Z) - 5 + 2 CT)) 
Relation (6) is proved for r< Z(t) in the same manner. 

From relations (4) and (6) we obtain 

where r+ are obtained from the relations t - z* = f (z - I @*))/a. 
We note that L= T+= t when z = 1 (t). 

Using the condition of continuity uo(t)= u(Z(t),t) and boundary condition (2), we obtain 

from (7) the following non-linear system of integrodifferential equations: 

t 
YO (2) = - 2 

2Pa s 
uo” (r) Jo(hy) dr 

Cl 

(7) 

(8) 

t 
1” (I) = - g. u(,” (f) ur,‘* (t) I’ (t) h 

a’- I’* (t) - 2 s 
%” (4 ‘+ (z (t) - 1 (T)) d%) 

” 
” (y = [(f - z)‘- (I (t) - 1 (r))‘/a’l”‘) 

with initial conditions (3). 

Let us consider in more detail the limiting case when h= 0. corresponding to the skew 

impact of a material point on a string without elastic support. The system of Eqs.(8) will 

now be rewritten in the form 

Integrating this system we arrive at the following relations: 

2 (t) E 0, y = 0 

The time of contact t* is found from the relation /2/ h"(P)= 0, and in the limiting case 
in question the time is infinite. The velocity of the material point 1' (0 tends asymptoti- 
cally to the quantity V* given by the relation 

In (v*/v,) = (l@ - u** - v**)/za" (Ca # 0) 

When h#O, the analytic investigation of system (8) becomes considerably more difficult; 

we therefore solved it by numerical methods. In order to facilitate the interpretation of the 
numerical results, we shall introduce the following notation: 

v’o = arctg z ( 
q* = a&g l’.(t*) 

IYJSjO' 
T*- 2PQt* 

m 

,*=2@(t*) -3 K = ?t*) + uoV*) , 
m Yl’ + 02 

g= h$ 
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Fig.1 Fig.2 

Here v0 is the angle of impact of the material point on the string, p* is the angle of 

reflection, T* is the dimensionless time of contact, z* is the dimensionless path of the 

material point along the string during the time of contact, K is the energy coefficient of 

restitution and P is the dimensionless stiffness coefficient of the support. 

Figs.1 and 2 show the relations II* :z Igr* (r&,), K = K (cco). v* ~zo*.(~o).~* = Z* (rpO) at p = 100,1, 0.01 

(curves 1, 2 and 3 respectively). The relations given above were obtained for r,= l/lt)~ = 

(1. The qualitative form of the graphs remains unchanged at other values of the initialvelocity 

1.0 < 0 
Analysing the results obtained we arrive at the following conclusions: 

a) an increase in the angle of impact leads to an increase in the time of contact, the 

distance covered by the material point, and the coefficient of restitution; 

b) the inquality a* >'0 holds for any P+O; 

c) when b decreases, we have ~*-mt-3o,z*-m 

K - 0. 'F* - rr.'2: 

d) when p _ --oc, we have r* -O,z* ---(J, li - 1.~' -qO.. 

As might have been expected, the collision of a material point with a string whichis not 

spring-loaded (k =O) is absolutely non-elastic, andnumericalinvestigationof the impact on a 

spring-loaded string shows that, as the rigidity of the support increases, the character of 

the collision approaches absolutely elastic. 
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